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Coupling MFS and FCM for the simulation of settling particles
at low Reynolds number Francesco Boselli, Dominik Obrist,

Leonhard Kleiser Institute of Fluid Dynamics, ETH Zurich

boselli / obrist / kleiser@ifd.mavt.ethz.ch

Abstract

We present a numerical model for the simulation of settling particles at low Reynolds number. The flow
is modelled as a quasi-stationary Stokes flow driven by localized time-dependent body forces due to the
presence of particles. The particles are modelled with the Force Coupling Method (FCM; Maxey & Patel,
Int. J. Multiphase Flow, 2001). The resulting governing equations for the flow are solved with a multilayer
version of the Method of Fundamental Solutions (multilayer MFS; Boselli et al., PAMM, 2009). As an
application, we present a model for benign paroxismal positional vertigo (BPPV). BPPV is a disease of
the vestibular system of the inner ear closely related to the presence of small calcite particles (canaliths)
which settle inside the semicircular canals (SCC). The anatomy of the SCC is suitable to be split into
subdomains with different typical flow features. Therefore we use a domain decomposition method in
order to reduce the computational effort and extend the applicability of MFS.
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LONG TIME BEHAVIOUR OF PARTITIONED MULTISTEP
METHODS

PAOLA CONSOLE1

1Université de Genève, paola.console@unige.ch

1 Introduction

The purpose of this work is the study of the partitioned multistep methods with focus on the preservation
of the Hamiltonian for long time integrations.
Our interest is in problems that cannot be written in the form

q̈ = −∇U(q).

In this work we present numerical experiments that confirm the excellent performance of explicit, sym-
metric partitioned multistep methods when applied to the equations of motion for the spherical pendulum
and for the double pendulum. By studying the parasitic solution components we analyze the linear case
(leading to a surprising result) and we obtain a heuristic explanation for the non-linear problems.

2 Results

We show that applying a partitioned multistep method to an Hamiltonian system, the error on the energy
remains bounded for long times integrations.
In Fig. 1 there is the comparison of the error on the energies obtained with the method

(A) : pn+3 − pn+2 + pn+1 − pn = h (fn+2 + fn+1)
(B) : qn+3 − qn+1 = 2hgn+2

(1)

and the explicit Adams method of order 2 applied on the equations of the Spherical Pendulum















ṗθ = p2ϕ
cos θ
sin3 θ

− sin θ
ṗϕ = 0

θ̇ = pθ
ϕ̇ =

pϕ

sin2 θ

We introduce the parasitic components, that are connected to the preservation of the Hamiltonian: in
the Fig. 2 are reported the error on the Hamiltonian obtained with the partitioned multistep method,
and the corresponding parasitic components; in the Fig. 3 are reported the parasitic components and the
error on the Hamiltonian for the Equations of the Double Pendulum whose Hamiltonian is

H (p, q) =
p21 + 2p22 − 2p1p2 cos (θ1 − θ2)

2
(

1 + sin2 (θ1 − θ2)
) − 2g cos (θ1)− g cos (θ2) .
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Figure 1: Comparison of the errors on the Hamiltonian obtained with Partitioned Multistep method and
Explicit Adams Method
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Figure 2: The Spherical Pendulum: error on the energy and parasitic terms
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Figure 3: The Double Pendulum: error on the energy and parasitic terms
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Mechanical model of plant cell tissue Aleš Janka1, Chrystel

Feller1, Richard Smith2, Alain Weber2, Naomi Nakayama2, Siobhan
Braybrook2 1Université de Fribourg, Mathématiques, ales.janka@unifr.ch

2Universität Bern, Institut für Pflanzenwissenschaften

Abstract

Recent advances in molecular biology and genetics provide an insight into physiological mechanisms
involved in maintenance and growth of plant cells. However, the functional complexity of plant cell tissue
is such, that one cannot single-out one phenomenon and experiment with it. Therefore, all biological
hypotheses explaining in vivo observations have to be analysed and verified on theoretical models in
silico. In order to link physiology and growth in these computer models, the mechanical state of cells in
the tissue has to be taken into account. First mechanical models of a plant cell tissue [?,?] consist usually
of a mass spring network simulating the mechanics of cell walls only on the epidermis (plant skin). More
refined models [?,?] represent the elastic response of cell walls in 3D by a system of membranes or shells.
The common feature of these two approaches, however, is that the symplastic compartment of a cell (the
cell interior) is simulated only by a given constant turgor pressure applied in normal direction to cell
walls. Since the material constants and constitutive laws for these models cannot be measured directly,
they are usually inferred from some standard stress-strain experiments like atomic force microscopy
(AFM) or micro-electro-mechanical (MEMS) “poking”. Experimental data are then usually collected
over relatively short time periods on osmotically treated cells. While the “constant turgor pressure”
approximation appears to be quite precise when considering slow growth, on the short time scale of a
“poking” experiment it does no longer apply. Moreover, due to osmotic treatments which are usually
applied in the “poking” experiments, the hydrostatic pressure might no longer be dominated by osmotic
pressure. Hence, a complete model of cell mechanics including the cytoplasm is needed in this case.
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Comparison of a Radial Basis Function Eigenvalue Solver and
High-Order Finite Elements

Thomas Kaufmann1, Christian Engström1,2

1Laboratory for Electromagnetic Fields and Microwave Electronics, ETH Zurich
thomas.kaufmann@ifh.ee.ethz.ch

2Seminar for Applied Mathematics, ETH Zurich
christian.engstrom@sam.math.ethz.ch

Meshless methods are an emerging class of numerical schemes with interesting characteristics in compu-
tational sciences. No explicit mesh configuration is required to solve physical problems with a meshless
method. Instead a node distribution Nc = {~ζ1, . . . , ~ζn} ⊂ Rd is used in a collocation approach, thus
avoiding the computational overhead of dealing with mesh elements. This advantage is especially help-
ful in adaptive grid refinement. The interpolation is carried out by Radial Basis Functions (RBFs) [1]
centered at ~ζk as ~x 7→ ϕ(||~x − ~ζk||2),x ∈ Rd, k = [1, . . . , n]. In the current implementation these are
Gaussians ϕ(r) = e−cr, which are expected to provide exponential spatial convergence [2] when c → 0
or maxi,j(||~ζi − ~ζj ||2) → 0. Due to their radial nature of the basis functions, a 3D implementation is
straightforward. On the negative side, this type of functions are generally globally supported and poorly
conditioned. The latter point is manifested in a gradually increased condition number for decreasing
shape parameters c, i.e. the matrix solver eventually breaks down. We circumvent this by applying a
“leave one out cross validation” (LOOCV) algorithm [3] which yields an optimized shape parameter c for
a given node distribution in order to realizing stable simulations. In this work a scalar Laplace eigenvalue
problem in strong form is solved in d = 2 with Dirichlet boundary conditions. As an illustration we
calculate eigenvalues in the unit disc.

The node adaptivity algorithm is based on the initial set of collocation nodes Nc. A Delaunay tessellation
is performed on Nc and a new set of test nodes Nt = [~ξ1, . . . , ~ξm] is generated by placing new nodes on
the edge centers of the Delaunay cells. An error function is calculated based on the residual error and the

Figure 1: Collocation and test nodes for the adaptive refinement algorithm.

jump in the numerical gradient between two nodes. For given approximative eigenpair (U , λ) the local
residual error is computed as

η(~ξj) = d2
~ξ1
||λU(~ξj)−∆U(~ξj)||2 + d2

~ξ1
||∇U(~ζjl ) · ~nl −∇U(~ζjr ) · ~nr||2 (1)

with the test node ~ξj between the collocation nodes ~ζjl and ~ζjr . The distance between these nodes is d~ξj

and the unit vectors ~nl, ~nr point from the collocation nodes to the test node (Fig. 1). All test nodes for
which the error function lies above a certain limit are added to the set of collocations subsequently:

Nc = {~ζ1, . . . , ~ζn} ∪ {~ξk : J(~ξk) ≥ βmax
j
J(~ξj)} (2)

for a given β ∈ [0, 1]. Several refinement iterations with the error estimator (1) are conducted. The result
of a refinement of the TM02 mode is shown in Fig. 2.

A study is performed to compare the performance of the presented method with a high-order finite-
element method. The adaptive refinement algorithm is performed for several eigenmodes and compared
with discontinuous p-FEM with curved elements using 6 triangular elements and p ≤ 18.
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Figure 2: Solution and node distribution Nc after refinement for TM02 mode.
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Optimized Schwarz method for problems with cross points

Martin J. Gander1, Felix Kwok2

1Section de Mathématiques, Université de Genève, Martin.Gander@unige.ch
2Section de Mathématiques, Université de Genève, Felix.Kwok@unige.ch

When performing large-scale physical simulations, one often encounters linear systems that are so large
that the they must be subdivided and solved in parallel using many processors. In optimized Schwarz
methods, this is done by dividing the computational domain into many subdomains, solving the smaller
subdomain problems in parallel, and iterating until one obtains a global solution that is consistent across
subdomain boundaries. Fast convergence can be obtained if Robin conditions are used along subdomain
boundaries, provided that the Robin parameters p are chosen correctly. It is well known that for two-
subdomain problems with no overlap, the optimal choice is p = O(h−1/2) (where h is the mesh size), with
the resulting method having a convergence factor of ρ = 1 − O(h1/2). However, when cross points are
present, i.e., when several subdomains meet at a single point, this choice leads to a divergent method. In
this work, we use a simple model problem to show that convergence can only occur if p = O(h−1) at the
cross point. In addition, this choice of p allows us to recover the 1 − O(h1/2) convergence factor in the
resulting method.
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Observables and Models of Stellar Explosions T. Fischer1, R.

Käppeli1, M. Liebendörfer1, A. Perego1, S. Scheidegger1, S. C.
Whitehouse1 1Physics Department, University of Basel, Basel, Switzerland,

matthias.liebendoerfer@unibas.ch

1 Introduction

Knowledge in astrophysics originates from a synthesis of astronomical observation, knowledge of terres-
trial physics and theoretical models of astrophysical scenarios. The extraction of information about the
laws of physics in the universe is most efficient, if the degree of detail and quality in the observation can
be matched by corresponding astrophysical models. However, it is a long-standing problem to perform re-
liable three-dimensional computer models of astrophysical scenarios due to the typically enormeous scale
differences in time and space that need to be covered, due to the technically challenging radiative trans-
fer that determines the long-distance observation, and due to the often fundamental three-dimensional
nature of the local interaction between fluid instabilities, the radiation field and the magnetic fields in
gravitationally bound objects. We focus on stellar core-collapse supernova explosions, which still pose
open proof-of-principle questions regarding their explosion mechanism, for which detailed observations
are available in almost all astronomical windows (optical, electromagnetic, neutrinos, cosmic rays, in
future hopefully gravitational waves), which probe matter under interesting conditions that are not ac-
cessible in terrestrial experiments, and whose nucleosynthetic yields provide a key to the understanding
of Galactic evolution.

2 Results

We use our spherically symmetric general relativistic hydrodynamics code AGILE with Boltzmann neu-
trino transport [?] or, alternatively, our multi-dimensional magneto-hydrodynamics code FISH [?] to-
gether with the isotropic neutrino diffusion source approximation (IDSA) [?] to build models of stellar
core collapse and postbounce evolution. We show that the neutrino signature of a galactic supernova is
likely to reveal detailed information about the explosion mechanism [?] and that gravitational waves can
be expected to be detected [?] at the LIGO detector. We try to visualise the dynamics and fluid insta-
bilities of supernova explosions by presenting the results of first three-dimensional models with spectral
neutrino transport and 6003 zones resolution. These models serve as foundation for further improvements
of the numerical algorithms in the HP2C project ’Stellar Explosions’ and as platform for the investigation
of the interesting and uncertain microscopic input physics.
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Adaptive finite element heterogeneous multiscale method for
homogenization problems

Assyr Abdulle1, Achim Nonnenmacher2
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1 Abstract

We discuss a posteriori error estimates for elliptic homogenization problems discretized by the finite-
element heterogeneous multiscale method [?,?]. Unlike standard finite element methods, our method is
based upon a macro-to-micro formulation where the macroscopic finite element method discretizes the
physical problem while the unknown macroscopic data is recovered on the fly by a microscopic method.

We derive a framework which builds upon the well-developed a posteriori analysis for single-scale problems
[?,?]. As the effective macroscopic data (such as the effective conductivity tensor) are not readily available
due to the multiscale nature of the problem, appropriate new error indicators have to be defined. These
indicators are used to derive a posteriori estimates for the upper and lower bound in the energy norm. The
macroscopic mesh refinement strategy is thus proven to be both reliable and efficient [?,?]. Furthermore
as these indicators only depend on the already computed macro and micro solutions, the computational
overhead for adaptivity is minimal.

Up to a modeling error, our estimates do not need any assumption on the spatial structure for the
oscillating tensor. In the case of a uniformly oscillating tensor, our estimates are consistent with the
classical single-scale a posteriori error estimates applied to the homogenized problem.

We highlight algorithmic differences with single-scale adaptive FE methods and confirm the efficiency
and reliability of our adaptive multiscale method with numerical experiments.
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Towards Massively Parallel Numerical Methods in a Biomedical
Application Helmar Burkhart, Matthias Christen, Madan Sathe,

Olaf Schenk Department of Computer Science, University of Basel, Switzerland,

{helmar.burkhart, m.christen, madan.sathe, olaf.schenk}@unibas.ch

Abstract

As the landscape of compute architectures is constantly evolving allowing us to deal with applications
of increasing problem size with billions of unknowns, it is equally important to address both numerical
methods and software issues due to many levels of parallelism. Hyperthermia treatment is a promising
option in oncology. By heating the tumor using electro-magnetic energy to about 45◦C, it is made more
susceptible to an accompanying radio- or chemo-therapy. In treatment planning two objectives are of
interest: simulating the temperature distribution within the patient’s body and determining the thera-
peutically optimal applicator antenna parameters given the patient’s geometry and target temperature
distribution. The first leads to solving Pennes’s bioheat equation, a parabolic PDE, the latter to solving
a large-scale nonlinear nonconvex PDE-constrained optimization problem. The PDE is discretized using
a finite volume discretization. To solve the forward problem, an explicit integration scheme is used. The
code for the arising stencil computations is generated by our evolving stencil framework. The benefit
of the framework is its ability to generate parallel code for multi- and many-core architectures includ-
ing multi-core CPUs and GPUs. The hardware characteristics are exploited by adapting the code for
optimal performance by using autotuning techniques that range from architecture-specific parameter de-
termination to choosing parallelization strategies [1,2]. For solving the inverse problem we are using a
primal-dual inexact interior point method combined with our recently developed highly-scalable hybrid
solver “PSPIKE” [3,4].
In order to tackle large-scale optimization problems we are facing with several challenges such as in-
exactness, krylov-subspace methods, preconditioning, outer/inner convergence, HPC cluster machines,
and different programming paradigms. The massively parallel optimization framework is able to solve
PDE-constrained optimization problems with millions of variables and constraints within a few minutes.
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A Geometric Integrator for Solving Stochastic Oscillators
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2Departement of Mathematics, University of Basel, Magdalena.Sigg@unibas.ch

In solving stochastic wave equations numerically, stochastic oscillators play an important role. The pseudo-
spectral semi-discretization in space of the considered partial differential equation leads to a large system
of coupled stochastic oscillators. We could just use an Euler-Maruyama method to solve the system, but
since the oscillators can be highly oscillatory, the time restrictions would be very stringent. We consider a
one-dimensional problem which describes a stochastic oscillator. The exact solution of this second-order
stochastic differential equation satisfies some properties such as the linear growth of the second moment.
Therefore, we propose a geometric integrator which is based on the variation-of-constants formula and
which solves the equation efficiently and reproduces these properties exactly.
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Robust PML for Nonlinear Wave Equations

IMBO SIM

MATHICSE, Ecole Polytechnique Fédérale de Lausanne, Switzerland, Imbo.Sim@epfl.ch

Abstract

Nonlinear wave problems in unbounded domains have in many fields of application, such as ul-
trasound surgery, molecular biology, oceanography and nano optics. The perfectly matched layer
(PML) method has proved a flexible and accurate method for the simulation of waves. It consists
in surrounding the computational domain by an absorbing layer, which generates no reflections at
its interface with the computational domain. We propose a simple PML formulation directly for the
nonlinear wave equations. Inside the absorbing layer, our formulation requires few variables, such
that it is cheap to implement. Since our formulation requires no higher derivatives, it is also easily
coupled with standard finite difference or finite element methods. Strong stability is proved in lin-
earized problem while numerical examples in two and three space dimensions illustrate the accuracy
and long time stability of our PML formulation.
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Element Method
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The simulation of time dependent waves propagating through a medium with rapidly varying propagation
speed can be prohibitively expensive with a standard finite element (FE) approach, because it requires a
resolution down to the findest scales of the medium. We propose a FE-scheme for solving the wave equation
numerically within the framework of heterogeneous multiscale methods (HMM), as introduced by E and
Engquist [5], which overcomes these problems. Here we adapt the method described by Abdulle [1, 3] to
the time dependent wave equation and derive optimal error estimates. Numerical experiments in periodic
and non-periodic heterogeneous media in one and two space dimensions illustrate the usefulness of our
approach.
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Consider a parameter-dependent linear system

A(α)x(α) = b(α),

where α is a vector of p parameters. We assume that the parameter space is discretized with a regular
grid and aim at computing the solution x(α) for each grid point. This becomes rather expensive for larger
p as the number of grid points grows exponentially in p. We therefore propose the use of low tensor rank
approximations to reduce the computational cost significantly. For this purpose, we treat the right hand
side b and the solution x evaluated at all grid points as tensors of dimension p + 1. Assuming that b
admits a low tensor rank approximation and A is sufficiently smooth, one can show that x also admits
a low tensor rank approximation. We present algorithms which exploit this fact and demonstrate their
efficiency with a number of examples.
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Partitioned Runge-Kutta-Chebyshev methods

Christophe J. Zbinden1,

1Université de Genève, Section de mathématiques,
Christophe.Zbinden@unige.ch

Abstract

Current research on stabilized methods focus on the time integration of advection-diffusion-reaction
problems [?, ?]. The advection terms introduce eigenvalues with imaginary parts which complicate the
selections of the temporal step size, the number of stages and the damping parameter of the method.

This poster introduces a new one-step, stabilized method of second-order which treats stiff and non-stiff
terms separately. The method, called PRKC (Partitioned Runge-Kutta-Chebyshev), reduces the number
of function evaluations of the non-stiff terms and embeds a thin long rectangle inside its stability regions
that facilitates the integration of advection-diffusion problems.

References

[1] J. G. Verwer, B. P. Sommeijer, and W. Hundsdorfer. RKC time-stepping for advection-diffusion-
reaction problems, Journal of Computational Physics (2004).

[2] B. P. Sommeijer and J. G. Verwer. On stabilized integration for time-dependent PDEs, Journal of
Computational Physics (2007).

1



Anisotropic finite element adaptation for 3D aerodynamic flows

Frédéric Alauzet1, Wissam Hassan2, Marco Picasso2
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1 Introduction

In the field of numerical simulations, the accuracy of the solution depends on the quality of the mesh. A
3D adaptive finite element algorithm was developed to solve the compressible Euler and Navier-Stokes
equations, with goal to reduce the CPU time and to reach a desired level of precision. The refinement
and coarsening criterion is based on an a posteriori error estimator suitable for meshes with large aspect
ratio. Moreover, an anisotropic error estimator for goal oriented a posteriori error estimates is developed.
This project is supported by Dassault Aviation.

2 Results

Numerical simulations have been carried out for an inviscid flow around a complete supersonic aircraft
and a transonic viscous flow around the ONERA M6 wing.

Figure 1: Adapted meshes and the associated local Mach number for the flows around the aircraft (left)
and the ONERA M6 wing (right).
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